Food Safety
search
cart
facebook twitter linkedin
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Food Safety
  • NEWS
    • Latest News
    • White Papers
  • PRODUCTS
  • TOPICS
    • Contamination Control
    • Food Types
    • Management
    • Process Control
    • Regulatory
    • Sanitation
    • Supply Chain
    • Testing and Analysis
  • PODCAST
  • EXCLUSIVES
    • Food Safety Five Newsreel
    • eBooks
    • FSM Distinguished Service Award
    • Interactive Product Spotlights
    • Videos
  • BUYER'S GUIDE
  • MORE
    • ENEWSLETTER >
      • Archive Issues
      • Subscribe to eNews
    • Store
    • Sponsor Insights
  • WEBINARS
  • FOOD SAFETY SUMMIT
  • EMAG
    • eMagazine
    • Archive Issues
    • Editorial Advisory Board
    • Contact
    • Advertise
  • SIGN UP!
Contamination ControlProcess ControlMicrobiologicalIntervention Controls

LEDs Can Control Food Contamination without Chemicals

October 6, 2015

In what promises to be an alternative food preservation technology, light-emitting diodes (LEDs) have proven their potential in killing foodborne pathogens, without the need for any chemicals.

A team of researchers from the National University of Singapore has demonstrated the efficacy of LEDs in inactivating foodborne pathogens such as Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes. The scientists used blue LEDs of peak wavelength 461 nm against the pathogens, which were suspended in the growth medium tryptone soya broth at a temperature of 15 °C. While the temperature was fixed, the illumination time was varied from 0 to 7.5 h. This meant that the LEDs, which had an intensity of 22 mW/cm2, supplied a dosage of nearly 600 J/cm2 at the end of the illumination period. The acidity of the suspension medium was also varied over a wide range, with pH levels tested ranging from 4.5 to 9.5. To evaluate the effect of the LEDs, the fate of the pathogens on illumination was compared to controls, which were maintained at the same pH but were not exposed to light.

The acidity of the medium was observed to have a profound effect on the outcome of LED illumination.[1] Greater susceptibility of all the bacteria could be discerned when the pH was shifted from near-neutral to acidic or alkaline extremes. Moreover, a trend was noticed within this susceptibility. The two Gram-negative pathogens, E. coli O157:H7 and S. Typhimurium, were much more sensitive to blue light at an alkaline pH of 9.5 rather than an acidic one. Reductions of the order 4-log colony-forming units/mL were seen at this pH. Conversely, the Gram-positive L. monocytogenes displayed greater vulnerability to the LEDs at an acidic pH of 4.5 relative to an alkaline one. At this pH, the concentration of Listeria in the suspension dropped below detectable limits under the influence of the LEDs within 6 h.  Significant sublethal injury was also reported whenever bacterial inactivation occurred, implying that membrane damage might be one of the causative factors in bacterial cell death. It was ascertained that the bactericidal effects witnessed in this study were due to a combination of the LEDs and the pH, and not due to the pH alone, as the control samples did not experience any inactivation whatsoever.

The antibacterial effect of LEDs stems from the ability of blue light to trigger photodynamic inactivation of bacteria. Bacterial cells contain light-sensitive compounds called porphyrins, which have absorption spectra between 400 and 430 nm. When light of this wavelength is made incident on the cells, the porphyrins are excited to a higher energy state. During their return to the ground state, these porphyrins collide with molecules or compounds of oxygen, transferring energy to them and converting them into reactive oxygen species (ROS) such as singlet oxygen, superoxide anion, hydrogen peroxide, and hydroxyl radical. These ROS initiate cytotoxic reactions, thus bringing about cell death.

This investigation demonstrates the potential of LEDs in inactivating foodborne pathogens in acidic as well as alkaline conditions. The success of this technology under acidic conditions holds promise for the preservation of raw produce such as fresh-cut fruit, which is threatened by post-harvest surface contamination at various stages from farm to fork. LEDs can be accommodated into a variety of devices and designs, such as domestic refrigerators, food court display units and supermarket shelves, given their low cost, energy efficiency and small size. Future research should be directed towards applying this technology to a greater variety of foods, against more diverse foodborne pathogens and on a larger scale.

The team has published this research in the journal Food Microbiology.[1] Besides this work, the team also evaluated the effects of temperature and organic acids on the antibacterial effect of LEDs. The details of these studies can be located in The International Journal of Food Microbiology[2] and Food Control,[3] respectively.

Hyun-Gyun Yuk, Ph.D., is an assistant professor of the food science and technology programme in the department of chemistry at the National University of Singapore.

References
1. Ghate, V, AL Leong, A Kumar, WS Bang, W Zhou and HG Yuk. 2015. Enhancing the antibacterial effect of 461 and 521 nm light-emitting diodes on selected foodborne pathogens in trypticase soy broth by acidic and alkaline pH conditions. Food Microbiol 48:49–57.
2. Ghate, VS, KS Ng, W Zhou, H Yang, GH Khoo, W-B Yoon and HG Yuk. 2013. Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different temperatures. Int J Food Microbiol 166:399–406.
3. Ghate, V, A Kumar, W Zhou and HG Yuk. 2015. Effect of organic acids on the photodynamic inactivation of selected foodborne pathogens using 461 nm LEDs. Food Control 57:333–340.

 


Author(s): Hyun-Gyun Yuk, Ph.D.

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • people holding baby chicks

    Serovar Differences Matter: Utility of Deep Serotyping in Broiler Production and Processing

    This article discusses the significance of Salmonella in...
    Contamination Control
    By: Nikki Shariat Ph.D.
  • woman washing hands

    Building a Culture of Hygiene in the Food Processing Plant

    Everyone entering a food processing facility needs to...
    Sanitation
    By: Richard F. Stier, M.S.
  • graphical representation of earth over dirt

    Climate Change and Emerging Risks to Food Safety: Building Climate Resilience

    This article examines the multifaceted threats to food...
    Contamination Control
    By: Maria Cristina Tirado Ph.D., D.V.M. and Shamini Albert Raj M.A.
Subscribe For Free!
  • eMagazine Subscription
  • Subscribe to eNewsletter
  • Manage My Preferences
  • Website Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Food Safety Magazine audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Food Safety Magazine or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • Deli Salads
    Sponsored byCorbion

    How Food Safety is Becoming the Ultimate Differentiator in Refrigerated and Prepared Foods

Popular Stories

recalled sysco and lyons imperial nutritional shakes

Listeria Outbreak Linked to Nutritional Shakes Served at Healthcare Facilities Causes 14 Deaths

Image of fish on ice

Common Fish Food Poisoning Types and Prevention Methods

Scientist inspecting food substance with microscope

FDA Announces ‘Proactive’ Post-Market Chemical Review Program to Keep Food Supply Safe

Events

June 12, 2025

Additive Bans Ahead: Your Guide to Avoiding Risk and Maintaining Agility

Live: June 12, 2025 at 12:00 pm EDT: From this webinar, attendees will learn how ingredient bans will impact product development, labeling, and sourcing.

View All

Products

Global Food Safety Microbial Interventions and Molecular Advancements

Global Food Safety Microbial Interventions and Molecular Advancements

See More Products
Environmental Monitoring Excellence eBook

Related Articles

  • Bridging the Quality Control Gap: How Six Sigma Can Increase Plant Food Safety and Profitability

    See More
  • employee wearing protective clothing

    How food processors can fight cross-contamination

    See More
  • broken glass

    How a Mature Food Safety Culture Can Prevent Foreign-Body Contamination

    See More

Related Products

See More Products
  • 9781032369990 (1).webp

    Food Safety Quality Control and Management

  • 9781498721776.jpg

    Handbook of Food Processing: Food Safety, Quality, and Manufacturing Processes

  • food-safety-making.jpg

    Food Safety: Making Foods Safe and Free From Pathogens

See More Products

Related Directories

  • Aptar Food + Beverage - Food Protection

    Aptar Food + Beverage – Food Protection manufactures premium active packaging systems and processing equipment, applying its unique material science expertise to develop advanced packaging systems that help extend freshness and enhance safety for fresh-cut fruits, vegetables and seafood. The company’s newest groundbreaking technology, InvisiShield™, offers an antimicrobial packaging solution that seamlessly integrates into sealed packages to protect fresh-cut produce and other food products from bacteria, fungi and viruses. Other offerings include trays, pouches, containers, slicing equipment, lidding film, and tray sealing technology.
  • Heat and Control Inc.

    Heat and Control®, a world-leading equipment manufacturer, offers the latest technology and highest quality equipment for processing, coating, seasoning, conveying, weighing, packaging, and inspection systems and develops innovative solutions for production challenges. With a global team of engineers, technicians, tradespeople, and support teams, they help manufacturers to achieve production goals.
  • SteraMist Disinfection

    SteraMist cold plasma ionized Hydrogen Peroxide (iHP) technology achieves quick disinfection without residue or wiping. SteraMist ensures rapid and efficient sanitization, protecting product quality and maximizing production time. SteraMist EPA-registered broad-spectrum disinfection solution minimizes the risk of cross-contamination by combatting a variety of microorganisms and mold. Learn more at SteraMist.com.
×

Never miss the latest news and trends driving the food safety industry

eNewsletter | Website | eMagazine

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing