Food Safety
search
cart
facebook twitter linkedin
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Food Safety
  • NEWS
    • Latest News
    • White Papers
  • PRODUCTS
  • TOPICS
    • Contamination Control
    • Food Types
    • Management
    • Process Control
    • Regulatory
    • Sanitation
    • Supply Chain
    • Testing and Analysis
  • PODCAST
  • EXCLUSIVES
    • Food Safety Five Newsreel
    • eBooks
    • FSM Distinguished Service Award
    • Interactive Product Spotlights
    • Videos
  • BUYER'S GUIDE
  • MORE
    • ENEWSLETTER >
      • Archive Issues
      • Subscribe to eNews
    • Store
    • Sponsor Insights
  • WEBINARS
  • FOOD SAFETY SUMMIT
  • EMAG
    • eMagazine
    • Archive Issues
    • Editorial Advisory Board
    • Contact
    • Advertise
  • SIGN UP!
Food TypeTesting & AnalysisChemicalMethodsProduce

Distribution of Chlorpyrifos Residues in Citrus Fruits

By Sebastian Bihl, Francisco Ferrer, Juan Cassinello, J.-Peter Krause, Udo Lampe
February 10, 2016

Citrus fruits partly owe their popularity to the high levels of vitamin C they provide and are considered an essential part of a healthy diet. During their production and postharvesting in conventional agriculture, the application of plant protection agents is required to ensure agricultural yield and fruit quality. This in turn leads to residues of postharvest protectants as well as pesticides being found in detectable concentrations in and on citrus fruits.

To protect consumers from the adverse effects of residues, the European Commission has established maximum residue levels (MRLs). The MRLs represent the maximum expected residue concentration if a pesticide is applied according to Good Agricultural Practices.[1] Before publishing new MRLs, the European Food Safety Agency (EFSA) evaluates toxicological effects while considering long-term exposure like acceptable daily intake and acute toxic effects through calculation of the acute reference dose (ARfD). Thus, authorities consider products that comply with the MRLs to be safe and legally marketable. However, new scientific knowledge may lead to modifications of the toxicological parameters. One example is the reevaluation of the acute toxicity of the insecticide chlorpyrifos due to studies that revealed harmful effects on human fetuses.[2,3] On April 22, 2014, EFSA consequently published a new ARfD for chlorpyrifos of 0.005 mg/kg/bw[4]—considerably lower than the old value of 0.1 mg/kg/bw.[5]

Calculating the acute exposure to chlorpyrifos[6] and comparing the ARfD with the common approach[7,8] shows that in this case, compliance with the MRL does not provide the level of consumer protection it was intended to, as in many cases the ARfD is exceeded considerably (Table 1).

Alongside public regulations, there has been a development of private standards by major food retail groups.[9,10] In 2004, complying with EU quality and safety standards was still said to be sufficient for most German retail groups.[11] Nowadays, the majority of German retailers have already introduced their own residue specifications to avoid possible problems resulting from official food analysis and a loss in consumer confidence. Those specifications are in some cases drastically lower than the official MRLs. In addition, some retailers have also established specifications for exceeding ARfD values as well as maximum sums for ARfD values.

In cases regarding chlorpyrifos, where consumer safety cannot be guaranteed until new MRLs are established by the European Commission, these specifications are of particular importance because consumers expect retailers to sell healthy food.[12]

In a routine control analysis, laboratories therefore must perform an analysis on the whole fruit to evaluate its legal marketability regarding MRLs. However, fruits like citrus or melon that are always peeled require a second analysis on the edible part only to calculate the acute intake and compare it with the ARfD. This is time-consuming and costly.

Is it possible to refrain from the second analysis or to perform it only in cases with specific risks—without putting food safety at risk? Some data can be found in the literature indicating that the peeling of fresh fruits such as bananas, citrus, mangoes or pineapples nearly completely removes pesticides from the fruit.[13] Lemons were treated in the field with the insecticide pirimiphos-methyl, and after 21–28 days of treatment, the concentration in the pulp was not detectable [limit of quantification (LOQ) less than 0.03 mg/kg], whereas 0.5–5 mg/kg were found in the skin.[14] In lye-peeled peaches, only 1 percent of the original concentration of tetrachlorvinphos was found.[15] The peeling of mangoes removed dimethoate (0.45 ppm), fenthion (0.40 ppm), cypermethrin (0.60 ppm) and fenvalerate (0.68 ppm) completely.[16] Similar results have been published relating to tomatoes and potatoes. For processed foods, a processing factor (PF) is usually included in the estimation of MRL and ARfD, since processing can increase or decrease the residue concentration. The substantial data found in the literature clearly show a trend, but there are insufficient samples to achieve statistical reliability. EFSA recommends at least 50 individual samples to calculate the variability factor of pesticides.[17] Statistical reliability is still given for 90–110 samples.[18]

The Joint Food and Agriculture Organization/World Health Organization Meeting on Pesticide Residues (JMPR) defines the PF as the ratio of the mean residue found in the processed commodity to the mean residue in the raw commodity before processing.[19] The JMPR states that PFs taken from the literature are frequently derived from an insufficient number of measurements and that the measuring conditions are not fully reported. Some PF values for citrus fruits are summarized in Table 2.

The aim of our study was to calculate and evaluate PFs for citrus fruits with regard to the data currently available from our routine analyses.

Materials and Methods
Citrus fruits (Table 3) were processed and analyzed according to the multi-residue method for determining pesticide residues.[20] The whole fruits were cut into quarters and homogenized in the presence of dry ice. After a solvent extraction according to QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe), the determination of pesticides was carried out by gas chromatography combined with tandem mass spectrometry. The pure pulp was treated in the same manner.

The PFs were calculated according to the JMPR method while taking into consideration that residues in the processed commodity are undetectable or less than the LOQ. The PF is calculated using the LOQ and should be described using a “less than” (<) symbol. If several samples have concentrations smaller than the LOQ, the lowest PF value should be taken instead of the mean value.

Results and Discussion
Only samples containing chlorpyrifos were chosen. In those instances where the concentration of chlorpyrifos was smaller than the current MRL, chlorpyrifos was in some cases found in the fruit pulp of mandarins (7.4%) and of lemons (10.4%). When the MRL was exceeded, chlorpyrifos was also found in the pulp of oranges. Figures 1–4 summarize the cumulative concentration of chlorpyrifos across the total sample population. The chlorpyrifos concentration was found to be smaller or equal to the LOQ for most samples. According to the JMPR method, the PF values were taken from the smallest value calculated for each matrix (Table 4). Each PF listed in Table 4 can be used to calculate the chlorpyrifos concentration in the fruit pulp and thus the ARfD. For pomelos and satsumas, the sample population is still too small. In those cases, the PF should be used only for orientation.

On the basis of this study, we recommend the usage of PFs to reduce costs, save time and still maintain a high level of food safety. For fruits with no available PFs, repetitive analysis of the edible part should still be carried out. 

Udo Lampe is the managing director of Analytica Alimentaria GmbH based in Germany and Spain. He has more than 15 years of experience in food safety testing and inspection. He is chairman of the Food Safety Task Group of International Accreditation Service Inc., USA.

J.-Peter Krause, Ph.D., is a physicist with more than 30 years experience in food and pharmaceutical technology.

Juan Ramirez Cassinello is the international technical director of Analytica Alimentaria GmbH and has more than 10 years of experience in food safety laboratories.

Francisco Ferrer is the lab manager of Analytica Alimentaria Spain and has over 8 years of experience in chemical analysis and testing for food quality and safety.

Sebastian Bihl is a state-certified food chemist.


References
1. MacLachlan, DJ and D Hamilton. 2010. “Estimation Methods for Maximum Residue Limits for Pesticides.” Reg Toxicol Pharmacol 58:208–218.
2. Zhao, Q et al. 2005. “Lower Birth Weight as a Critical Effect of Chlorpyrifos: A Comparison of Human and Animal Data.” Reg Toxicol Pharmacol 42:55–63.
3. Whyatt, RM et al. 2004. “Prenatal Insecticide Exposures and Birth Weight and Length among an Urban Minority Cohort.” Env Health Persp 112:1125–1132.
4. www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/3640.pdf.
5. www.furs.si/law/EU/ffs/eng/annexI/direktive/RR/Chlorpyrifos.doc.
6. www.efsa.europa.eu/en/efsajournal/pub/4142.
7. Boobis, AR et al. 2008. “Cumulative Risk Assessment of Pesticide Residues in Food.” Tox Lett 180:137–150.
8. www.bfr.bund.de/cm/343/neues-bfr-modell-fuer-die-deutsche-bevoelkerung-im-alter-von-14-bis-80-jahren-nvs-2.pdf.
9. Henson, S and NH Hooker. 2001. “Private Sector Management of Food Safety: Public Regulation and the Role of Private Controls.” Int Food Agribus Man Rev 4:7–17.
10. Northen, JR. 2001. “Using Farm Assurance Schemes to Signal Food Safety to Multiple Food Retailers in the UK.” Int Food Agribus Man Rev 4:37–50.
11. Martinez, MG and N Poole. 2004. “The Development of Private Fresh Produce Safety Standards: Implications for Developing Mediterranean Exporting Countries.” Food Policy 29:229–255.
12. www.food-safety.com/magazine-archive1/junejuly-2006/shopping-for-food-safety-and-the-public-trust-what-supply-chain-stakeholders-need-to-know-about-consumer-attitudes/.
13. Kaushik, G et al. 2009. “Food Processing a Tool to Pesticide Residue Dissipation—A Review.” Food Res Int 42:26–40.
14. Holland, PT et al. 1994. “Effects of Storage and Processing on Pesticide Residues in Plant Products. IUPAC Reports on Pesticides.” Pure Appl Chem 66:335–356.
15. Fahey, JE et al. 1970. “Removal of Gardona from Fruit by Commercial Preparative Methods.” J Agric Food Chem 18:866–868.
16. Awasthi, MD. 1993. “Decontamination of Insecticide Residues on Mango by Washing and Peeling.” J Food Sci Technol 30:132–133.
17. www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/177.pdf.
18. Hamilton, D et al. 2004. “Pesticide Residues in Food – Acute Dietary Exposure.” Pest Manage Sci 60:311–339.
19. www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/JMPR05report.pdf.
20. Biziuk, M and J Stocka. 2015. “Multiresidue Methods for Determination of Currently Used Pesticides in Fruits and Vegetables Using QuEChERS Technique.” Int J Env Sci Dev 6:18–22.


Author(s): Udo Lampe, J.-Peter Krause, Ph.D., Juan Ramirez Cassinello, Francisco Ferrer and Sebastian Bihl

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Sebastian Bihl is a state-certified food chemist.
Francisco Ferrer is the lab manager of Analytica Alimentaria Spain and has over 8 years of experience in chemical analysis and testing for food quality and safety.
Juan Ramirez Cassinello is the international technical director of Analytica Alimentaria GmbH and has more than 10 years of experience in food safety laboratories.
J.-Peter Krause, Ph.D., is a physicist with more than 30 years experience in food and pharmaceutical technology.
Udo Lampe is the managing director of Analytica Alimentaria GmbH based in Germany and Spain. He has more than 15 years of experience in food safety testing and inspection. He is chairman of the Food Safety Task Group of International Accreditation Service Inc., USA.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • people holding baby chicks

    Serovar Differences Matter: Utility of Deep Serotyping in Broiler Production and Processing

    This article discusses the significance of Salmonella in...
    Contamination Control
    By: Nikki Shariat Ph.D.
  • woman washing hands

    Building a Culture of Hygiene in the Food Processing Plant

    Everyone entering a food processing facility needs to...
    Food Prep/Handling
    By: Richard F. Stier, M.S.
  • graphical representation of earth over dirt

    Climate Change and Emerging Risks to Food Safety: Building Climate Resilience

    This article examines the multifaceted threats to food...
    Contamination Control
    By: Maria Cristina Tirado Ph.D., D.V.M. and Shamini Albert Raj M.A.
Manage My Account
  • eMagazine Subscription
  • Subscribe to eNewsletter
  • Manage My Preferences
  • Website Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Food Safety Magazine audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Food Safety Magazine or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • mold
    Sponsored byIFC

    Tackling Mold Remediation in Food Processing Plants

  • a worker in a food processing plant
    Sponsored byLPS® DETEX®

    How a Beverage Facility Improved Food Safety and Compliance with Detectable Packaging Solutions

  • Two men standing in a produce storage facility having a discussion.
    Sponsored byOrkin Commercial

    Staying Compliant With FSMA

Popular Stories

sunflower oil

Louisiana Passes ‘MAHA’ Bill Targeting More Than 40 Ingredients, Including Seed Oils, Dyes, Sweeteners

smoked salmon in oil

Study Shows Food Type Significantly Affects Listeria’s Ability to Survive Digestion, Cause Sickness

Justin Ransom and Denise Eblen

USDA-FSIS Announces Dr. Justin Ransom as New Administrator

Events

July 15, 2025

Hygienic Design Risk Management: Industry Challenges and Global Insights

Live: July 15, 2025 at 11:00 am EDT: From this webinar, attendees will learn the importance of hygienic design to ensure food safety and sanitation effectiveness.

July 22, 2025

Beyond the Binder: Digital Management of Food Safety

Live: July 22, 2025 at 3:00 pm EDT: During this webinar, attendees will learn best practices for the use of digital food safety management systems across industry and regulatory agencies.

August 7, 2025

Achieve Active Managerial Control of Major Risk Factors Using a Food Safety Management System

Live: August 7, 2025 at 2:00 pm EDT: From this webinar, attendees will learn about changes to the FDA Food Code, which now includes a requirement for FSMS. 

View All

Products

Global Food Safety Microbial Interventions and Molecular Advancements

Global Food Safety Microbial Interventions and Molecular Advancements

See More Products
Environmental Monitoring Excellence eBook

Related Articles

  • oranges generic image

    Save Foods Completes Preharvest Application Trials on Citrus Fruits

    See More
  • crop duster with fda logo overlay

    FDA Withdraws Guidance on Chlorpyrifos Residues; Publishes Revisions to PCHF Draft Guidance

    See More
  • FDA Announces Guidance on Enforcement Approach to Human Food with Chlorpyrifos Residues

    FDA Announces Guidance on Enforcement Approach to Human Food with Chlorpyrifos Residues

    See More

Related Products

See More Products
  • 9781498721776.jpg

    Handbook of Food Processing: Food Safety, Quality, and Manufacturing Processes

  • 9781138070912.jpg

    Trends in Food Safety and Protection

  • 1119237963.jpg

    Food Safety in China: Science, Technology, Management and Regulation

See More Products

Related Directories

  • North American Chemical Residue Workshop

    NACRW) formerly the Florida Pesticide Residue Workshop conducts an annual meeting for scientists particularly interested in trace level analysis of pesticides, veterinary drug residues, and other chemicals in food, animal feed, and environmental samples. The purpose of the meeting is to provide training, develop and improve technical knowledge, facilitate development and distribution of new analysis methods and techniques, and establish networking to promote professional cooperation between scientists of these interests.
  • WTI Inc.

    Protect your brand. Incorporate WTI’s ingredients to ensure that your food remains safe, reliable, and of the highest quality from production to consumption. WTI produces naturally-derived vinegar antimicrobials, lemon-based phosphate alternatives, and conventional solutions that improve food quality, enhance yield, produce cleaner labels, keep food safe, and extend shelf-life.
×

Never miss the latest news and trends driving the food safety industry

eNewsletter | Website | eMagazine

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing