Food Safety
search
Ask Food Safety AI
cart
facebook twitter linkedin
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Food Safety
  • NEWS
    • Latest News
    • White Papers
  • PRODUCTS
  • TOPICS
    • Contamination Control
    • Food Types
    • Management
    • Process Control
    • Regulatory
    • Sanitation
    • Supply Chain
    • Testing and Analysis
  • PODCAST
  • EXCLUSIVES
    • Food Safety Five Newsreel
    • eBooks
    • FSM Distinguished Service Award
    • Interactive Product Spotlights
    • Videos
  • BUYER'S GUIDE
  • MORE
    • ENEWSLETTER >
      • Archive Issues
      • Subscribe to eNews
    • Store
    • Sponsor Insights
    • ASK FSM AI
  • WEBINARS
  • FOOD SAFETY SUMMIT
  • EMAG
    • eMagazine
    • Archive Issues
    • Editorial Advisory Board
    • Contact
    • Advertise
  • SIGN UP!
Contamination ControlProcess ControlMicrobiologicalCross-ContaminationIntervention Controls

A Closer Look at Reducing Antibiotic Resistance and Antibiotic Use in Food Animals

November 19, 2013

Although the importance of reducing antibiotic resistance is universally acknowledged, the details of how to identify best management practices and environmental Critical Control Points remain to be articulated. I have looked at challenges and opportunities for reducing antibiotic resistance in agricultural settings.

The first challenge we face is determining how to measure antibiotic resistance. The term “antibiotic resistance” is broadly used to refer to three main elements of resistance: drugs, bugs and genes. First there are the antibiotic drugs which are the chemicals administered to animals, added to aquaculture tanks, or sprayed on fruit crops. Next there are the “bugs”—the resistant bacteria that live in feces, soil, water and air. Finally there are the resistance genes, which are pieces of DNA that carry the genetic instructions for resistance. Usually these are carried inside of bacteria, but they can potentially persist even after a cell dies.

The issue is complicated by the fact that there are over 100 different antibiotic drugs, and resistance to each of them is encoded by multiple genes. Tetracycline resistance, for instance, can occur by three different mechanisms, and is encoded by over 25 different genes. If we want to measure or track tetracycline resistance to determine how much is there right now, and how much is it reduced over time when a particular management strategy is implemented, which one of these 25 different genes should be used?

With all this complexity, it can be expected that there will be different on-the-ground strategies and targets for the reduction of resistance in various production systems. There will be different priorities in fruit tree orchards compared to aquaculture, poultry, swine, cattle or produce production. The fact that the antibiotic drugs, resistant bacteria, and resistance genes are found in manure and soil is a common link in all systems, and an important component of how resistance might be transferred through agroecosystems to impact human health.

The solution that is most often discussed is reducing the amount of antibiotic drugs sold to and used by farmers for food production. While any reduction in the use of these drugs can potentially help, this strategy alone will not solve the problem.

That brings us to challenge number two: antibiotic resistance occurs naturally in the environment. It is easy for those not familiar with soil systems to get the impression that the natural level of antibiotic resistance is zero. That it is the human or agricultural use of the drugs that creates antibiotic resistance. This is not the case. Antibiotic drugs come from soil bacteria, and the soil is a natural reservoir of resistance across the globe.  The reservoir of resistance in the soil is called the soil “resistome,” and it plays an important role in the development and spread of antibiotic resistance. Scientists have looked at resistance in both agricultural and pristine settings like native prairies, Antarctic lakes, and the Sargasso Sea. Antibiotic resistance genes can be found in all of these places. Even this naturally occurring resistance is a great concern, and the environment is an important component in how resistance might impact human health outcomes.

The fact that antibiotic resistance can occur naturally, and that the soil and environment are significant reservoirs brings us to the third and most important challenge—how to determine baseline levels of the drug, bug, or gene we are measuring, and how to sort out the resistance that can be impacted by best management practices from the resistance that is naturally present in any particular system.

One opportunity for having a positive impact on limiting the spread of resistant bacteria and genes is through manure management strategies. Treatments that reduce pathogens and general fecal bacterial numbers will also impact some antibiotic resistant bacteria, and may also reduce the persistence of antibiotic resistance genes. We need to evaluate existing strategies for this potential.

The issue of agricultural antibiotic use is starting to focus attention on the impact that soil and water systems have on human health. In the words of Dr. Cray, an international expert on the surveillance of antibiotic resistance in foodborne pathogens “the circulation of bacteria between animals, environment, humans – and back again in no particular order confounds the analysis of what begins where, who is responsible for what, and how resistance can be controlled best.”

The environment plays a key role in the transmission of antibiotic resistance through agroecosystems. A second opportunity for us as a community is to develop standards for measuring the drugs, bugs and genes in complex food and environmental samples in a way that allows us to coordinate our individual efforts while simultaneously protecting our individual interests. This can be done by building a network of independent scientists who are using validated, quality controlled methods, and moving the focus of our combined efforts to understanding the ecology of antibiotic resistance farm to fork.

Lisa Durso, Ph.D., is a research microbiologist with the United States Department of Agriculture, Agricultural Research Service, Agroecosystem Management Research Unit and a member of the Soil Science Society of America. She can be reached at lisa.durso@ars.usda.gov.

>
Author(s): Lisa Durso, Ph.D.

Looking for quick answers on food safety topics?
Try Ask FSM, our new smart AI search tool.
Ask FSM →

Share This Story

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • people holding baby chicks

    Serovar Differences Matter: Utility of Deep Serotyping in Broiler Production and Processing

    This article discusses the significance of Salmonella in...
    Microbiological
    By: Nikki Shariat Ph.D.
  • woman washing hands

    Building a Culture of Hygiene in the Food Processing Plant

    Everyone entering a food processing facility needs to...
    Facilities
    By: Richard F. Stier, M.S.
  • graphical representation of earth over dirt

    Climate Change and Emerging Risks to Food Safety: Building Climate Resilience

    This article examines the multifaceted threats to food...
    Best Practices
    By: Maria Cristina Tirado Ph.D., D.V.M. and Shamini Albert Raj M.A.
Manage My Account
  • eMagazine Subscription
  • Subscribe to eNewsletter
  • Manage My Preferences
  • Website Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Food Safety Magazine audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Food Safety Magazine or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • Salmonella bacteria
    Sponsored byThermoFisher

    Food Microbiology Testing Methods: Salmonella species

  • a diagram explaining indicator organisms
    Sponsored byHygiena

    How Proactive Listeria Testing Helps Prevent Six- and Seven-Figure Recalls

  • woman grocery shopping
    Sponsored byCorbion

    Designing Safety Into Every Bite: Proactive Risk Mitigation for Refrigerated Foods

Popular Stories

NRTE breaded stuffed chicken

USDA Indefinitely Delays Enforcement of Salmonella as Adulterant in Raw Breaded, Stuffed Chicken

non-conforming product

How to Handle Non-Conforming Product

spoonfuls of food ingredients

FDA’s Developing Rule to Tighten GRAS Oversight Moves to White House

Events

December 11, 2025

How to Develop and Implement an Effective Food Defense Strategy

Live: December 11, 2025 at 2:00 pm EDT: From this webinar, attendees will learn common areas where companies encounter challenges in their food defense strategies and how to address them.

May 11, 2026

The Food Safety Summit

Stay informed on the latest food safety trends, innovations, emerging challenges, and expert analysis. Leave the Summit with actionable insights ready to drive measurable improvements in your organization. Do not miss this opportunity to learn from experts about contamination control, food safety culture, regulations, sanitation, supply chain traceability, and so much more.

View All

Products

Global Food Safety Microbial Interventions and Molecular Advancements

Global Food Safety Microbial Interventions and Molecular Advancements

See More Products

Related Articles

  • Antibiotic Use in Food Animals: A Growing Threat to Public Health

    See More
  • Public Health Risk of Antibiotic Use in Food Animals

    See More
  • veterinarian in PPE on pig farm holding syringe and bottle of medication

    UK Reports Decade-Low Antibiotic Sales for Use in Food Animals, Decreasing AMR

    See More

Related Products

See More Products
  • 9781138070912.jpg

    Trends in Food Safety and Protection

  • 1119237963.jpg

    Food Safety in China: Science, Technology, Management and Regulation

  • food safety.jpg

    Food Safety Contaminants and Risk Assessment

See More Products

Related Directories

  • Elanco Animal Health

    ELANCO (NYSE: ELAN) is a global animal health company serving customers in more than 90 countries. The Elanco Poultry team combines industry-leading products and services with their professional experience and collaboration skills to help customers remain confident of success in the ever-changing poultry industry. Our team includes consultants with extensive veterinary knowledge and experience. Our industry-leading products focus on food safety, intestinal integrity, bioprotection, and nutrition.
  • A&B Ingredients

    A&B Ingredients is a manufacturer and distributor of unique specialty ingredients to the food industry. We specialize in natural, clean-label, plant-based ingredients for food safety and shelf life extension in food and beverage products. Our CytoGUARD portfolio includes antimicrobials, yeast and mold inhibitors, natural preservatives, and antioxidants. We also provide turn-key solutions for sodium reduction with natural lower sodium sea salts.
×

Never miss the latest news and trends driving the food safety industry

eNewsletter | Website | eMagazine

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing