Food Safety
search
Ask Food Safety AI
cart
facebook twitter linkedin
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Food Safety
  • NEWS
    • Latest News
    • White Papers
  • PRODUCTS
  • TOPICS
    • Contamination Control
    • Food Types
    • Management
    • Process Control
    • Regulatory
    • Sanitation
    • Supply Chain
    • Testing and Analysis
  • PODCAST
  • EXCLUSIVES
    • Food Safety Five Newsreel
    • eBooks
    • FSM Distinguished Service Award
    • Interactive Product Spotlights
    • Videos
  • BUYER'S GUIDE
  • MORE
    • ENEWSLETTER >
      • Archive Issues
      • Subscribe to eNews
    • Store
    • Sponsor Insights
    • ASK FSM AI
  • WEBINARS
  • FOOD SAFETY SUMMIT
  • EMAG
    • eMagazine
    • Archive Issues
    • Editorial Advisory Board
    • Contact
    • Advertise
  • SIGN UP!
News

From Farm to Fork, Researchers Track Antibiotic-Resistant Salmonella Strains

September 4, 2013


Source: Penn State University

Continuing research on Salmonella may enable researchers to identify and track strains of antibiotic-resistant bacteria as they evolve and spread, according to researchers in Penn State's College of Agricultural Sciences.

Tracing the transmission of individual strains from agricultural environments to humans through the food system is difficult because of the rapid evolution of resistance patterns in these bacteria. Resistance patterns change so quickly that, until now, it has been impossible to determine where some highly resistant strains are coming from.

Michael DiMarzio, a doctoral candidate in food science working under the direction of Edward Dudley, associate professor and Casida Development Professor of Food Science, developed a method for identifying and tracking strains of Salmonella enterica serological variant Typhimurium as they evolve and spread.

Every year in the United States, the various strains of Salmonella together are responsible for an estimated one million illnesses, 20,000 hospitalizations and 400 deaths, at a cost exceeding $3 billion. Salmonella Typhimurium accounts for at least 15 percent of clinically reported salmonellosis infections in humans nationally. The number of antibiotic-resistant isolates identified in humans is increasing steadily, suggesting that the spread of antibiotic-resistant strains is a major threat to public health.

"Typhimurium infections have exhibited a gradual decline in susceptibility to traditional antibiotics, a trend that is concerning in light of this pathogen's broad host range and its potential to spread antibiotic resistance determinants to other bacteria," DiMarzio said. "Now more than ever, it is imperative to effectively monitor the transmission of Salmonella Typhimurium throughout the food system to implement effective control measures."

Building on recent research done in Dudley's lab, DiMarzio developed the new approach to identify antibiotic resistant strains of Salmonella Typhimurium focusing on virulence genes and novel regions of the bacteria's DNA known as clustered regularly interspaced short palindromic repeats (CRISPR). They report their results in the September issue of Antimicrobial Agents and Chemotherapy.

CRISPRs are present in many foodborne pathogens. The researchers demonstrated that CRISPR sequences can be used to identify populations of Salmonella with common antibiotic-resistance patterns in both animals and humans.

"Specifically, we were able to use CRISPRs to separate isolates by their propensity for resistance to seven common veterinary and human clinical antibiotics," DiMarzio said. "Our research demonstrates that CRISPRs are a novel tool for tracing the transmission of antibiotic-resistant Salmonella Typhimurium from farm to fork."

DiMarzio found that several subtypes of Salmonella Typhimurium showed up repeatedly in the frozen collection of Salmonella samples taken from cows, pigs and chickens in Penn State's Animal Diagnostic Laboratory. In this case, researchers looked at 84 unique Salmonella Typhimurium isolates collected from 2008 to 2011.

"We know those strains are widely disbursed, and the thing they have in common is that they have noticeably higher levels of antibiotic resistance," he said. "So we examined clinical samples of Salmonella taken from humans, and it turned out that we see an overlap — the ones we see in humans are the ones we see a lot in animals. You would expect that, but it is confirmation that our method works."

DiMarzio noted that the researchers identified subsets of the overall Salmonella bacteria population that seem to be more prone to acquiring antibiotic resistance.

"Our challenge now is to learn what makes those strains different — why do some strains acquire resistance while others don't, even though both are circulating widely among animal populations?" he said. "We will need to know that to try to control them."

The U.S. Army Research Office funded this research. The USDA National Needs Fellowship program funded DiMarzio.

Looking for quick answers on food safety topics?
Try Ask FSM, our new smart AI search tool.
Ask FSM →

Share This Story

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • people holding baby chicks

    Serovar Differences Matter: Utility of Deep Serotyping in Broiler Production and Processing

    This article discusses the significance of Salmonella in...
    Contamination Control
    By: Nikki Shariat Ph.D.
  • woman washing hands

    Building a Culture of Hygiene in the Food Processing Plant

    Everyone entering a food processing facility needs to...
    Facilities
    By: Richard F. Stier, M.S.
  • graphical representation of earth over dirt

    Climate Change and Emerging Risks to Food Safety: Building Climate Resilience

    This article examines the multifaceted threats to food...
    Best Practices
    By: Maria Cristina Tirado Ph.D., D.V.M. and Shamini Albert Raj M.A.
Manage My Account
  • eMagazine Subscription
  • Subscribe to eNewsletter
  • Manage My Preferences
  • Website Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Food Safety Magazine audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Food Safety Magazine or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • Salmonella bacteria
    Sponsored byThermoFisher

    Food Microbiology Testing Methods: Salmonella species

  • a diagram explaining indicator organisms
    Sponsored byHygiena

    How Proactive Listeria Testing Helps Prevent Six- and Seven-Figure Recalls

  • woman grocery shopping
    Sponsored byCorbion

    Designing Safety Into Every Bite: Proactive Risk Mitigation for Refrigerated Foods

Popular Stories

NRTE breaded stuffed chicken

USDA Indefinitely Delays Enforcement of Salmonella as Adulterant in Raw Breaded, Stuffed Chicken

non-conforming product

How to Handle Non-Conforming Product

spoonfuls of food ingredients

FDA’s Developing Rule to Tighten GRAS Oversight Moves to White House

Events

December 11, 2025

How to Develop and Implement an Effective Food Defense Strategy

Live: December 11, 2025 at 2:00 pm EDT: From this webinar, attendees will learn common areas where companies encounter challenges in their food defense strategies and how to address them.

May 11, 2026

The Food Safety Summit

Stay informed on the latest food safety trends, innovations, emerging challenges, and expert analysis. Leave the Summit with actionable insights ready to drive measurable improvements in your organization. Do not miss this opportunity to learn from experts about contamination control, food safety culture, regulations, sanitation, supply chain traceability, and so much more.

View All

Products

Global Food Safety Microbial Interventions and Molecular Advancements

Global Food Safety Microbial Interventions and Molecular Advancements

See More Products

Related Articles

  • From Farm to Fork to Landfill––Yale Law School Debuts Food Law and Policy Course

    See More
  • flock of brown hens

    USDA-FSIS to Exclude Salmonella Vaccine Strains from Performance Categorization

    See More
  • An update on integrating blockchain from farm to fork

    An update on integrating blockchain from farm to fork

    See More

Related Products

See More Products
  • food-safety-making.jpg

    Food Safety: Making Foods Safe and Free From Pathogens

  • 1118474600.jpg

    Practical Food Safety: Contemporary Issues and Future Directions

  • 1119053595.jpg

    Food Safety for the 21st Century: Managing HACCP and Food Safety throughout the Global Supply Chain, 2E

See More Products
×

Never miss the latest news and trends driving the food safety industry

eNewsletter | Website | eMagazine

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing