Food Safety
search
cart
facebook twitter linkedin
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Food Safety
  • NEWS
    • Latest News
    • White Papers
  • PRODUCTS
  • TOPICS
    • Contamination Control
    • Food Types
    • Management
    • Process Control
    • Regulatory
    • Sanitation
    • Supply Chain
    • Testing and Analysis
  • PODCAST
  • EXCLUSIVES
    • Food Safety Five Newsreel
    • eBooks
    • FSM Distinguished Service Award
    • Interactive Product Spotlights
    • Videos
  • BUYER'S GUIDE
  • MORE
    • ENEWSLETTER >
      • Archive Issues
      • Subscribe to eNews
    • Store
    • Sponsor Insights
  • WEBINARS
  • FOOD SAFETY SUMMIT
  • EMAG
    • eMagazine
    • Archive Issues
    • Editorial Advisory Board
    • Contact
    • Advertise
  • SIGN UP!

Rapid advancement in rapid testing

By Elizabeth Fuhrman
Rapid Testing
October 17, 2017

Faster PCR methods, better culture methods, more selective enrichment methods and quantitative biosensor methods all have advance the field of rapid pathogen testing recently. Speed and sensitivity are two areas researchers are targeting, says Loreen Stromberg, a postdoctoral researcher at Iowa State University in Ames and chief executive officer and co-founder of NanoSpy Inc.

Stromberg and Carmen Gomes, associate professor in the department of Mechanical Engineering at Iowa State University and co-founder of NanoSpy, specialize in development and testing of biosensors for detecting foodborne pathogens in food-processing plants. The rapid test can return results in 20 to 30 minutes, versus the 24 to 48 hours necessary for enrichment-dependent methods. 

NanoSpy focuses on developing electrochemical sensors, a technology invented by Jonathan Clausssen, assistant professor in in the department of Mechanical Engineering at Iowa State University and co-founder of NanoSpy, and his team. Those sensors are electrodes fabricated with inkjet-printed graphene that are laser-treated to increase the surface area and conductivity of the sensor. These properties allow for very sensitive detection of bacteria because of the increased surface area and intense electrical field generated on the surface of the sensor, Stromberg explains. NanoSpy can functionalize the surface for numerous targets, but specifically for foodborne pathogens, it uses aptamers to detect Salmonella in pork and Listeria in dairy and produce wash water. 

“It works very much like the glucose testing that you would have available in the pharmacy for measuring glucose,” Gomes says. “You convert the signal of your bacteria binding onto your sensor into a signal that is easy to interpret by non-technical people.” 

Work on rapid testing of Shiga toxin-producing Escherichia coli (STEC) also continues this year through the Coordinated Agricultural Program (CAP) grant from the U.S. Department of Agriculture. CAP grant researchers are developing detection methods for the several STEC pathogens, including O26, O45, O103, O111, O121, O145 and O157 in the beef industry.

In turn, the CAP grant is studying three lines of PCR rapid testing. The first method is traditional PCR, which is able to detect around a dozen molecular targets simultaneously in one reaction. For the CAP grant, the technology can detect and differentiate O157 and the other six major STEC O groups of E. coli plus four major virulence genes.

“By other methods it would be difficult to handle, but by traditional PCR methods we were able to detect all 11 genes in one reaction,” says Jianfa Bai, associate professor and director of molecular research and development in the Kansas State Veterinary Diagnostic Laboratory at Kansas State University in Manhattan, Kan.

Traditional PCR is not able to quantify the concentration of bacteria in a sample. With real-time PCR, though, researchers can only detect three or four targets per reaction, but can quantify and tell not only which bacteria are present in the sample, but also the concentration of E. coli. Currently, CAP grant researchers have developed three tests to cover the seven E. coli O groups and major virulence genes. Bai says traditional PCR could be used as a screening for bacteria, and if the test is positive, real-time PCR can quantify it if needed. 

The challenge then becomes if a virulence gene, i.e., Shiga toxin gene, is detected in a sample, one cannot confirm whether the virulence gene is carried by specific bacteria because multiple bacteria strains are present in animal samples. Digital PCR, the CAP grant’s third line of PCR study, answers this challenge. Digital PCR is to have a PCR reaction allocated into at least a few hundred little chambers, having a reaction occur within each chamber.

“Because a chamber is so small, normally it only contains a single bacteria cell,” Bai explains. “If two signals, i.e., O157 and a Shiga toxin gene, are detected from the same chamber, it will indicate that the Shiga toxin gene is carried by the O157 strain. That way it not only can detect and quantify, but confirm the virulence gene is carried by which particular E. coli strain.”

Bai is optimistic about digital PCR as the test offers next-day reporting, which is much shorter than the current weeklong STEC confirmation procedure. While the CAP grant researchers are testing these methods strictly for STEC in beef, Bai adds the methodologies can be used can be used for other Gram-negative bacteria.  NP

This article was originally posted on www.provisioneronline.com.

This article was originally posted on www.provisioneronline.com.
KEYWORDS: rapid testing

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Elizabeth christenson 200x200
Elizabeth Fuhrman is a contributing writer.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • people holding baby chicks

    Serovar Differences Matter: Utility of Deep Serotyping in Broiler Production and Processing

    This article discusses the significance of Salmonella in...
    Microbiological
    By: Nikki Shariat Ph.D.
  • woman washing hands

    Building a Culture of Hygiene in the Food Processing Plant

    Everyone entering a food processing facility needs to...
    Facilities
    By: Richard F. Stier, M.S.
  • graphical representation of earth over dirt

    Climate Change and Emerging Risks to Food Safety: Building Climate Resilience

    This article examines the multifaceted threats to food...
    Best Practices
    By: Maria Cristina Tirado Ph.D., D.V.M. and Shamini Albert Raj M.A.
Subscribe For Free!
  • eMagazine Subscription
  • Subscribe to eNewsletter
  • Manage My Preferences
  • Website Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Food Safety Magazine audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Food Safety Magazine or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • Two men standing in a produce storage facility having a discussion.
    Sponsored byOrkin Commercial

    Staying Compliant With FSMA

  • Deli Salads
    Sponsored byCorbion

    How Food Safety is Becoming the Ultimate Differentiator in Refrigerated and Prepared Foods

Popular Stories

Image of produce being washed on a conveyor belt in a facility

Science in Action: How Nanobubbles Are Advancing Food Safety Standards

FoodSafetyMattersFinal-900x550-(002).jpg

Ep. 195. Dr. Christopher Daubert: The Value of a Food Science Education

Students returning their lunch trays in a cafeteria

California Bill Would Remove Ultra-Processed Foods from School Lunches

Events

June 26, 2025

How to Design and Conduct Challenge Studies for Safer Products and Longer Shelf Life

Live: June 26, 2025 at 2:00 pm EDT: During this webinar, attendees will learn how to conduct challenge studies for microbial spoilage and pathogen growth, including the common challenges encountered, laboratory selection, and use of predictive models.

May 11, 2026

The Food Safety Summit

Stay informed on the latest food safety trends, innovations, emerging challenges, and expert analysis. Leave the Summit with actionable insights ready to drive measurable improvements in your organization. Do not miss this opportunity to learn from experts about contamination control, food safety culture, regulations, sanitation, supply chain traceability, and so much more.

View All

Products

Global Food Safety Microbial Interventions and Molecular Advancements

Global Food Safety Microbial Interventions and Molecular Advancements

See More Products
Environmental Monitoring Excellence eBook

Related Articles

  • Fight for Food Safety

    Expect substantial, rapid food-safety advancement to continue

    See More
  • Hygiena launches improved, rapid Listeria species detection method

    Hygiena launches improved, rapid Listeria species detection method

    See More
  • FSS news generic image

    3M earns AOAC Performance Tested Methods certification for rapid Campylobacter test

    See More

Related Directories

  • AEMTEK Laboratories

    ISO 17025 accredited third-party laboratory focused on accuracy, turnaround times, customer service, and knowledgeable staff. AEMTEK specializes in product testing, environmental monitoring, shelf-life studies, process validation, research, training, and consulting services. For over 20 years, AEMTEK has provided clients with holistic solutions to ensure food safety.
  • FC&T Pharmaceuticals

    FC&T provides label owners and manufacturers access to full scale formulation design, product development, and analytical testing capabilities. We specialize in developing your formulation or product concept into an effective and safe finished product. From liposomal liquids, to gummies, softgels, and powders; nothing is outside of our realm of expertise.
  • Matrix Sciences

    In an increasingly complex environment, Matrix Sciences brings together the expertise, resources and support needed to partner with the agri-food supply chain – from Cultivation to Consumer®. The results: the information they require to make informed decisions with confidence in the cultivation, production, and research of food and agriculture products
×

Never miss the latest news and trends driving the food safety industry

eNewsletter | Website | eMagazine

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing