
Difficult to Inactivate Microorganisms

Alvin Lee

(alee33@iit.edu)

May 6-9, 2019 | Rosemont, IL Donald E. Stephens Convention Center

Outline

Set the scene

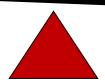
Food processing perspective

Food technologies

- Balance between safety and quality
- Examples

Challenges

A Balancing Act


Food Safety Balance

Need to destroy Pathogens Spoilage Organisms Enzymes

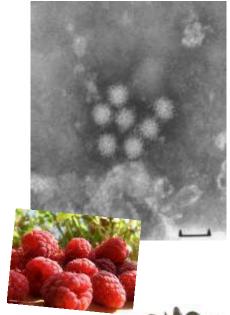
VS

Optimise
Flavour
Texture
Colour
Nutritional quality

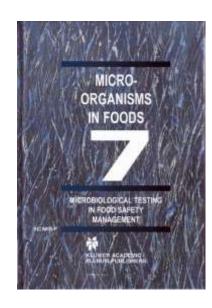
Outbreaks

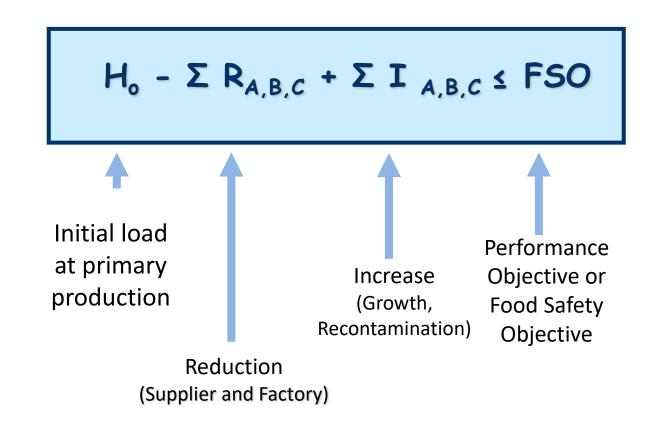
- Ingredients and finished products are affected
- Global trade that impact multiple countries
 - HAV frozen berries from Canada, Serbia and Poland with cases in Italy
 - NoV in frozen strawberries from China affecting 12,000 in Germany
 - 2018 Winter Olympics
- Effective controls measures throughout food chain

15/03/2019	2019.1003	Germany	norovirus (GII /25g) in frozen red currants from Poland	fruits and vegetables
22/02/2019	2019.0686	France	foodborne outbreak suspected to be caused by norovirus (GI and GII /2g) in live oysters from France	bivalve molluscs and products thereof
22/02/2019	2019.0691	Italy	foodborne outbreak suspected to be caused by norovirus (GII /2g) in live oysters (Crassostrea gigas) from France	bivalve molluscs and products thereof
13/02/2019	2019.0554	Netherlands	norovirus (GI and GII /2g) in live oysters (Crassostrea gigas) to be purified from Portugal	bivalve molluscs and products thereof

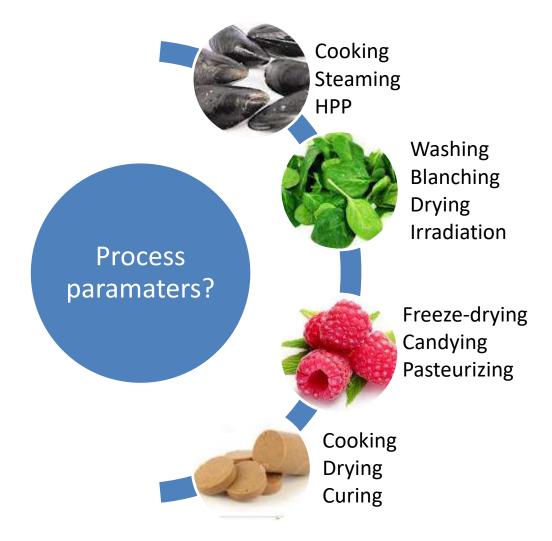


Hepatitis A sickens 17 in Denmark with link to dates





Effectiveness of Control Measures



¹ICMSF conceptual equation Microbiological testing in Food Safety Management, ICMSF (International Commission on Microbiological Specifications for foods) (2002); Book 7

Which Matrices-Process Combinations?

Control Measures

Intrinsic and extrinsic food factors

- Conventional
- Alternative

Processing technologies

- Conventional
- Alternative

chilled & frozen storage

pH, a_w

antiviral food component & food packaging

thermal processing

sanitizers

Other technologies e.g. HPP, irradiation, light

Virus Inactivation Studies: Challenges

Pathogen versus surrogate

NOV

MNV (Murine Norovirus)

FCV (Feline calicivirus)

TV (Tulane virus)

Bacteriophages, e.g. MS2

Laboratory scale *versus* pilot scale
RT-qPCR *versus* infectivity assay
Cell culture media *versus* food matrix

HAV HM-175

HEV

HEV genotype 3 strain 47832c

Thermal Stability of Hepatitis E Virus as Estimated by a Cell Culture Method

Reimar Johne, a Eva Trojnar, a Matthias Filter, a Jörg Hofmann

Federal Institute for Risk Assessment, Berlin, Germany^a; Institute of Medical Virology, Charité Medical School, Berlin, Germany^b

Johne et al., 2016

Thermal Processing

Boiling water (for min 60s) effectively (>4 log₁₀ reduction) inactivates viruses (enteroviruses, HRV, huNoV, HAV and HEV) that are transmitted by contaminated water (CDC 2009)

HAV

Anarrial of Food Protection, Vol. 28, No. 8, 2015, Pages 1597–1617 doi:10.4315/0362-028X.JPP-14-487 Capyligh B. Immutional Association for Food Protection

Review

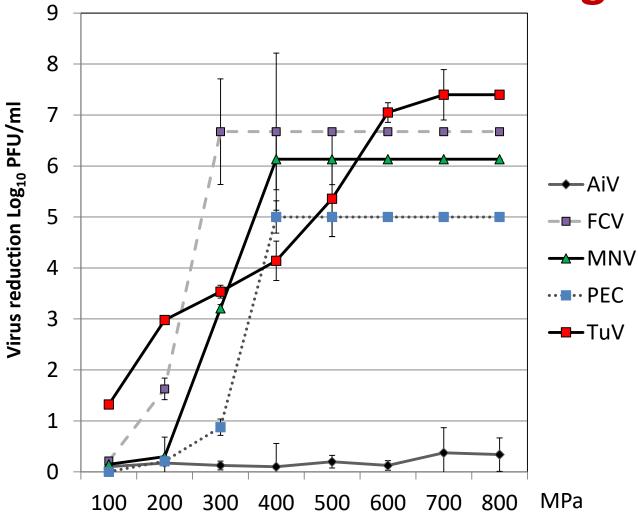
Thermal Inactivation of Foodborne Enteric Viruses and Their Viral Surrogates in Foods

HAYRIYE BOZKURT, DORIS H. D'SOUZA, AND P. MICHAEL DAVIDSON®

Control measures	Matrix	Virus	Log ₁₀ reduction	Reference
72°C, <0.3 min	Cell culture medium	HAV	1	Hewitt, 2009
72°C, 0.88 min	Cell culture medium	HAV	1	Bozkurt, 2014
72°C <mark>,</mark> 0.91 min	Spinach	HAV	1	Bozkurt, 2015
72°C, 1.07 min	Mussels	HAV	1	Bozkurt, 2014
85°C, 1 min	Strawberry mashes (28° Brix)	HAV	1	Deboosere, 2004
85°C, 5 min	Strawberry mashes (52° Brix)	HAV	1	Deboosere, 2004
80°C, 20 min	Freeze-dried berries	HAV	<2	Butot, 2009

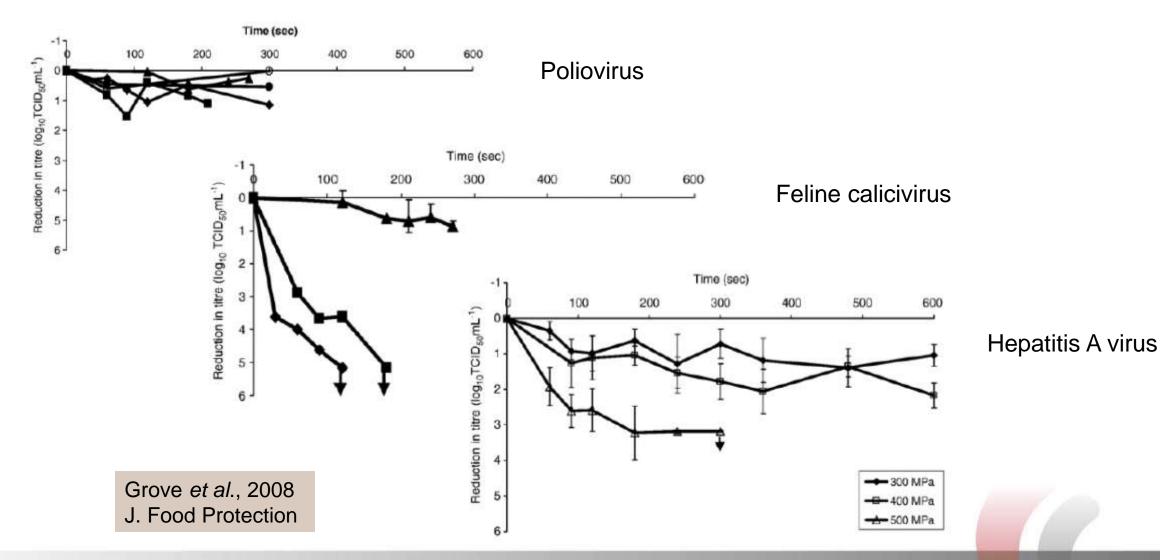
NoV and Its Surrogates

NoV


thermal processsing

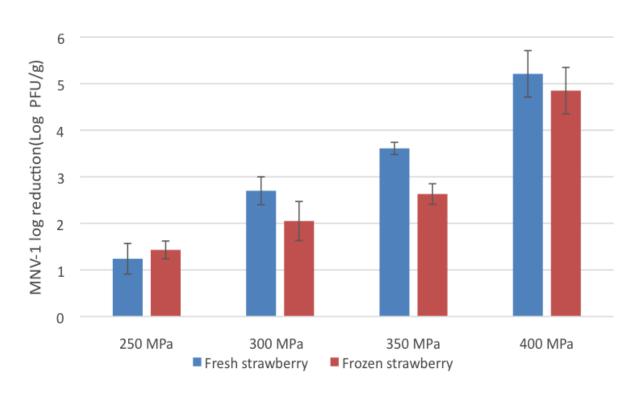
Control measures	Matrix	Virus	Log ₁₀ reduction	Reference
72°C, 1 min	Water	MNV	>3.5	Hewitt et al 2009
80°C, 1 min	Spinach	MNV	≥ 2.4	Baert et al. 2008
75°C, 0.25 min	Raspberry puree	MNV	2.8	Baert et al. 2008
95°C, 2.5 min	Basil	FCV	> 4	Butot et al. 2009
60°C, 15 min	Stool	HuNoV	>5	Ettayebi <i>et al.</i> , 2016

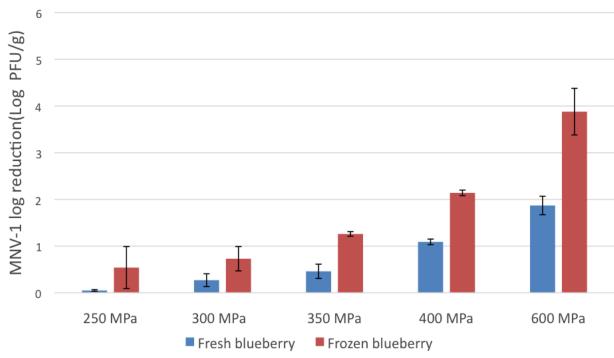
➤ How will HuNoV inactivation data compare with the different surrogates?


HPP Inactivation of Surrogates

Cromeans et al., 2013 AEM

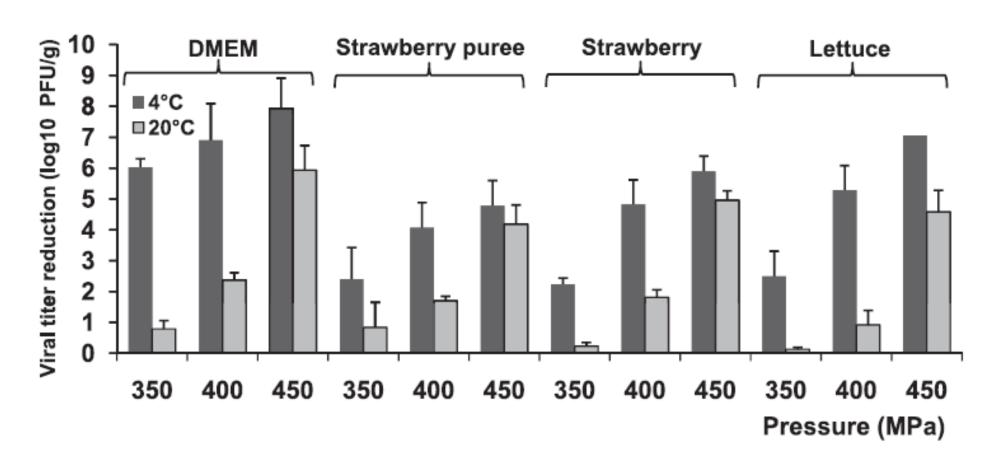
High Pressure Processing and Viruses



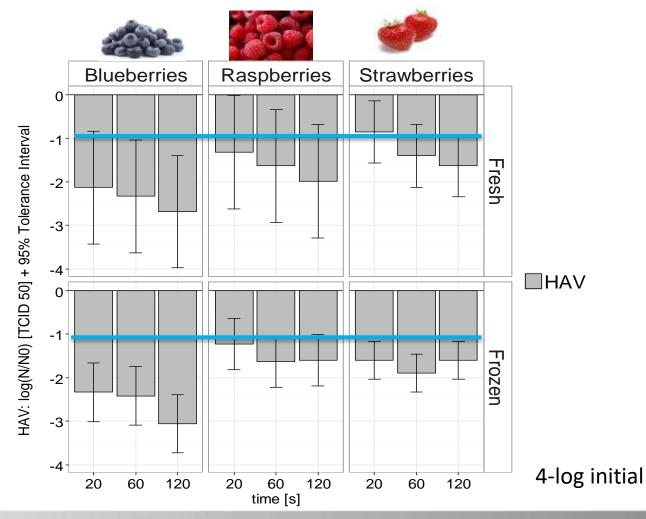

Application of High Pressure Processing (HPP) on Fresh and Frozen Strawberries

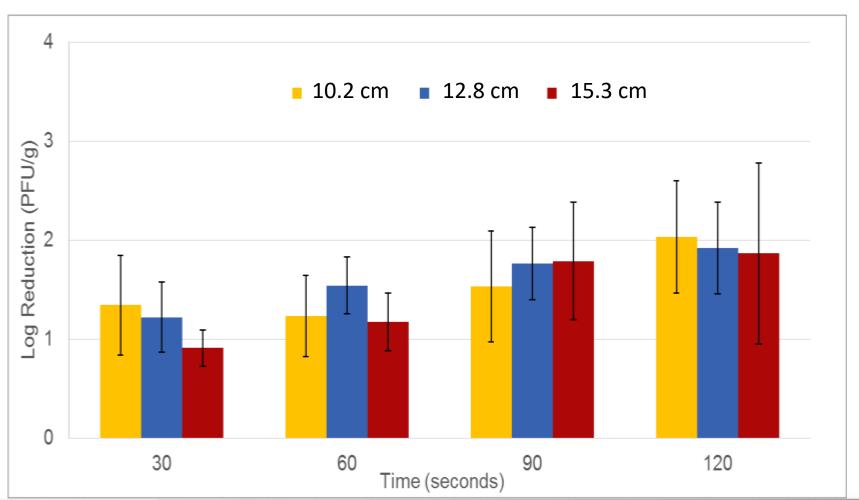
	Fresh control	No HPP (pouched)	400 MPa, 1 min	600 MPa, 5 min
Fresh				
Comments	5/5 - Fresh red color, firm berries, bright, healthy cells on internal cut surface.	5/5 - Same appearance as Fresh control berries.	than No HPP, but no substa	act after processing. Skin may be slightly darker antial change. Color leaches from flesh, so cut vibrant than No HPP. No difference between
	Frozen control	No HPP (pouched)	400 MPa, 1 min	600 MPa, 5 min
Frozen				
Comments	3.5/5 - Relatively firm, but softer than fresh berries.	3.5/5 – Same appearance as Frozen control berries.	2/5 - Berries softer than No darker than the no HPP con	HPP. Flesh color slightly duller, skin slightly itrol. No difference between pressure treatments.

HPP Inactivation of MNV on Fresh and Frozen Strawberries and Blueberries


Strawberry

Blueberry


MNV-1 Inactivation by HPP in Various Food Matrices


Lou et al., 2011, AEM 77(1862-1871)

Hepatitis A Virus Inactivation by UV-C on Fresh and Frozen Berries

Inactivation of MNV-1 on Fresh Strawberries using Pulsed Light (3 Hz)

4 log inoculation

Highlights of Using Surrogates in Processing Technologies

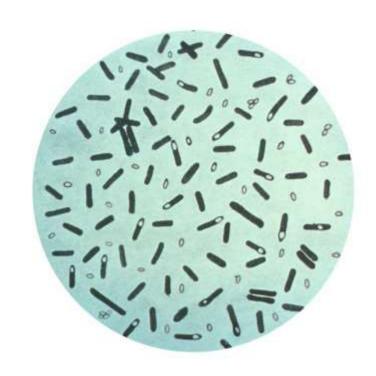
Processing Technology	Possible Viral Inactivation Mechanism	Inactivation of Surrogates
Frozen and chilled storage	Instability of viral capsid	 Low reduction of most surrogates. Viruses stable in most frozen or chilled conditions.
pH and water activity	Unknown, if any	 Low reduction of most surrogates, except FCV which is pH sensitive and thus not an appropriate surrogate for acidic matrices.
Light based technologies	Photochemical reactions may cause capsid instability	 High inactivation in clear liquids and on surfaces of most surrogates. Low inactivation on complex food surfaces or turbid liquids or liquids containing particles. Low penetration depth and reduced inactivation if viruses are in food matrices.

➤ Currently used / applied food processing technologies can be classified in achieving either around 1 log₁₀ ("low") or around 3 log₁₀ ("high") reductions, however, the choice of surrogate may result in significant differences

Outlook on Hepatitis E Virus

HEV

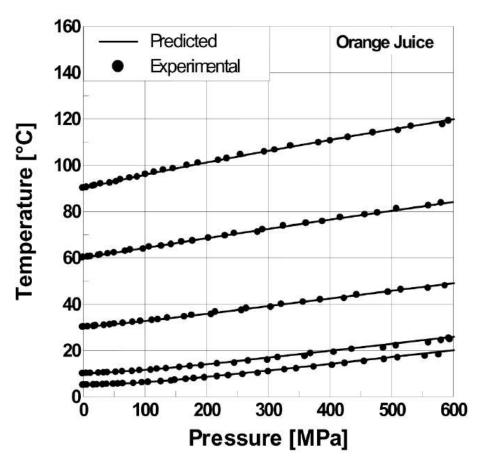
thermal processsing

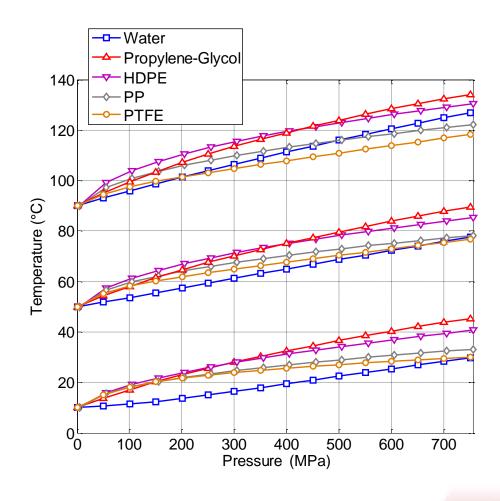

Control measures	Matrix	Virus	Reduction	Reference	
71°C for 20min	Pig liver	HEV	Complete inactivation (pig model)	Barnaud <i>et al.</i> , 2012	
62°C for 30 min 72°C for 30 sec 100°C for 3 min	Cow milk	HEV	Incomplete inactivation (monkey model) Incomplete inactivation (monkey model) Complete inactivation (monkey model)	Huang <i>et al.</i> , 2016	
70°C for 1.5 min	Cell culture medium	HEV	3.6 log ₁₀	Johne <i>et al</i> ., 2016	

➤ Inactivation data needed of HEV in meat and milk at the different time-temperature combinations used during processing

Clostridium botulinum

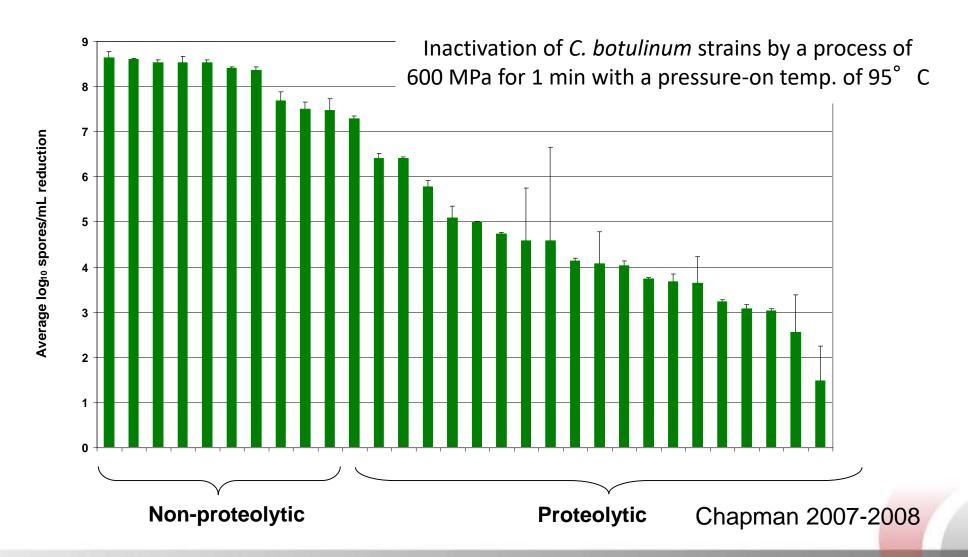
- Anaerobic, Gram positive, rod-shaped sporeforming bacteria
- Growth pH 4.8-7.0
- Lipase negative, proteolytic/nonproteolytic
- Spores resistant to heat and UV light and can remain dormant for years
- Produces botulinum toxin A-G, a 150kDa twostranded protein of extremely potent poison to humans/animals

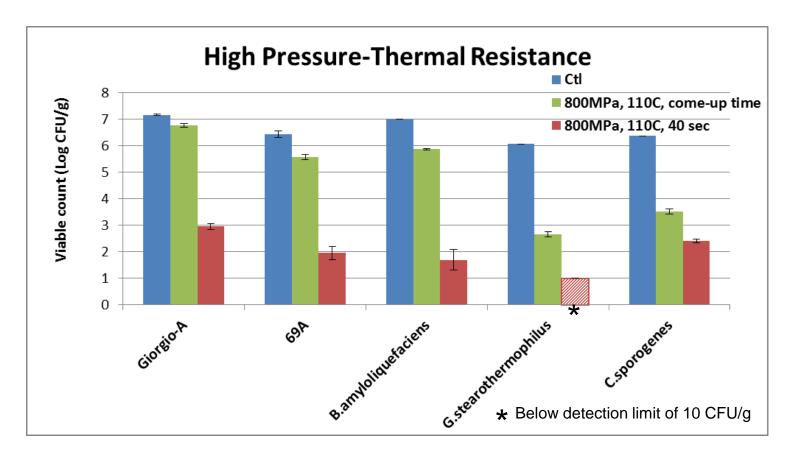



C. botulinum Groups

Group	I	II	III	IV*
Toxin type	A, B, F	B, E, F	C, D	G
Proteolysis	yes	no	no-weak	no
Growth temp Optimum °C	35-40	18-25	40	37
Growth temp Minimum °C	12	3	15	
Disease host	human	human	animal	

Temperature Elevation Due to Pressurization


Ardia et al., 2004


Knoerzer and Versteeg, 2009

Clostridium botulinum inactivation by HPP

Characterization and Qualification of Challenge Microorganisms

Comparison of pressure-thermal resistance of spores crops

Challenges for Validation

Standardized sh method for de evaluating decontamination strategies for foods

A forum for standards development? Who should initiate this development?

ALSO: Surrogates for validations at pilot-scale are lacking

HuNoV cultured! HEV culturable strain available

BECAUSE: Guidelines lacking on surrogate choice, inoculum level and inoculation methods

BUT: Cultivable human NoV and HEV not widely available yet and quantification of inactivation levels above $3 \log_{10}$ may be difficult to evaluate

Thank You!

